منابع مشابه
Numerical Solution to a Linearized KdV Equation on Unbounded Domain
Exact absorbing boundary conditions for a linearized KdV equation are derived in this paper. Applying these boundary conditions at artificial boundary points yields an initial-boundary value problem defined only on a finite interval. A dual-Petrov-Galerkin scheme is proposed for numerical approximation. Fast evaluation method is developed to deal with convolutions involved in the exact absorbin...
متن کاملOn the orbital stability of Gaussian solitary waves in the log-KdV equation
We consider the logarithmic Korteweg–de Vries (log–KdV) equation, which models solitary waves in anharmonic chains with Hertzian interaction forces. By using an approximating sequence of global solutions of the regularized generalized KdV equation in H(R) with conserved L norm and energy, we construct a weak global solution of the log–KdV equation in a subset of H(R). This construction yields c...
متن کاملThe Linearized Crocco Equation
In this paper, we study the existence and uniqueness of a degenerate parabolic equation, with nonhomogeneous boundary conditions, coming from the linearization of the Crocco equation [12]. The Crocco equation is a nonlinear degenerate parabolic equation obtained from the Prandtl equations with the so-called Crocco transformation. The linearized Crocco equation plays a major role in stabilizatio...
متن کاملOn the Linearized Balescu-lenard Equation
Abstract. The Balescu-Lenard equation from plasma physics is widely considered to include a highly accurate correction to Landau’s fundamental collision operator. Yet so far it has seen very little mathematical study. We perform an extensive linearized analysis of this equation, which includes determining the asymptotic behavior of the new components of the linearized operator and establishing ...
متن کاملJustification of the log-KdV Equation in Granular Chains: The Case of Precompression
For travelling waves with nonzero boundary conditions, we justify the logarithmic Korteweg– de Vries equation as the leading approximation of the Fermi-Pasta-Ulam lattice with Hertzian nonlinear potential in the limit of small anharmonicity. We prove control of the approximation error for the travelling solutions satisfying differential advance-delay equations, as well as control of the approxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Sciences
سال: 2017
ISSN: 1539-6746,1945-0796
DOI: 10.4310/cms.2017.v15.n3.a13